標題:
maths question about polynomials, pls. teach me
發問:
Use the factor theorem to factorize the following polynomials. 2x^3 - 25x^2 +67x +40
最佳解答:
Let f(x) = 2x3﹣25x2 + 67x + 40 f(5) = 2(5)3﹣25(5)2 + 67(5) + 40 f(5) = 0 So (x﹣5) is the factor of f(x). By using the long division, 2x2﹣15x﹣8 __________________ x﹣5/ 2x3﹣25x2 + 67x + 40 2x3﹣10x2 __________________ -15x2 + 67x -15x2 + 75x __________________ - 8x + 40 - 8x + 40 __________________ So f(x) = (x﹣5)(2x2﹣15x﹣8) f(x) = (x﹣5)(2x + 1)(x﹣8) 2008-08-22 15:02:57 補充: 2x^3﹣25x^2 + 67x + 40 = (x﹣5)(2x + 1)(x﹣8) 2008-08-23 02:12:45 補充: 其實 f(-1/2)都是f(x)的因式 但比較難搵到 所以40的其中因式是5,你可以試試。 2008-08-23 17:35:12 補充: 根據因式定理(factor theorem), 若x﹣a是f(x)的因式,則f(a) = 0,而a是一個整數
其他解答:
很清楚, 但我不明 f(x) 為何是 f(5), 請解釋下.
此文章來自奇摩知識+如有不便請留言告知