標題:
會考程度maths題 (解答贈點10分)
發問:
In the figure, the 1st [attern consists of 3 dots. For any positive integer n , the (n+1) the pattern is formed by adding (2n+3) dots to the nth pattern. Find the number of dots in the 6th pattern. 希望解答者有仔細的解答 ;) 無限感謝. 請不要作無謂的問答, 請尊重自己! 尚有其他MATHS問題, 有意解答者可閱本人所發問的知識. 更新: 以上問題答案為48. _______________________________ 由於我發問極也發問不到的關係, 希望有好心人可以解答以下這題`.. If 0度
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
For the 1th pattern,3=(1+1)^2-1 For the 2th,3+(2×2+1)= 8 =(2+1)^2 - 1 For the 3th,8+(2×3+1)=15=(3+1)^2 - 1 So from the above pattern,we can deduce the general term for the nth pattern= (n+1)^2 -1 The number of dots in the 6th pattern=(6+1)^2 -1 = 48 For 0 cos44. So I is incorrect. Then,tanc = sinc/cosc Since sinc > 0 and 0 45 Since the value of cosc decreases when c increases, So cos(90-c)
其他解答:
留言列表