close
標題:
Prove that If ac ≡ bc (mod
發問:
Prove that If ac ≡ bc (mod m) and (c,m) =1 Then a ≡ b (mod m)
最佳解答:
ac ≡ bc (mod m) m | (ac - bc) m| c(a - b) As (c,m) = 1, m should divide a - b So, a ≡ b (mod m)
其他解答:
Prove that If ac ≡ bc (mod
發問:
Prove that If ac ≡ bc (mod m) and (c,m) =1 Then a ≡ b (mod m)
最佳解答:
ac ≡ bc (mod m) m | (ac - bc) m| c(a - b) As (c,m) = 1, m should divide a - b So, a ≡ b (mod m)
其他解答:
此文章來自奇摩知識+如有不便請留言告知
文章標籤
全站熱搜
留言列表